
Budget allocations for hierarchical fixed-priority
scheduling of sporadic tasks with deferred preemptions

upon EDP resources

[Updated version]
∗

Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

ABSTRACT
In this paper we revisit the admission of applications upon a pro-
cessor share modeled by the explicit-deadline periodic (EDP) resource-
supply model. In particular, we consider applications that represent
a fixed-priority sporadic task system. Existing works heavily build
on the analysis of a hierarchy of preemptive task schedulers. We
instead consider the feasibility of such tasks and applications for
a hierarchy of deferred-preemptive schedulers, so that we can effi-
ciently deal with the scenario where tasks and applications execute
their work in non-preemptive chunks. Our model therefore gives
better control over preemptions of tasks of different applications.

We present exact analysis for deferred-preemptive scheduling of
tasks on EDP resources. In addition, we propose algorithms for
dimensioning an application’s budget tightly.

1. INTRODUCTION
Hierarchical scheduling frameworks (HSFs) have been introduced
by Deng and Liu [10] to support preemptive processor sharing
among applications under different scheduling policies. The HSF
provides means for composing a complex system from well-defined
parts called virtual platforms. Each virtual platform hosts an ap-
plication with its own scheduler for scheduling internal workloads
(tasks) and system resources are allocated by a global scheduler to
the virtual platforms. An HSF essentially provides a mechanism for
timing-predictable composition of coarse-grained virtual platforms.
These virtual platforms can be independently developed, analyzed
and tested. Temporal isolation between applications is provided
through budgets which are allocated to the corresponding virtual
platform.

∗Copyright is held by the authors.

This work has been presented in the 6th Workshop on Com-
positional Theory and Technology for Real-Time Embedded
Systems (CRTS 2013) and is reformatted for appearance in a special
issue of the ACM SIGBED Review.

Looking at existing industrial real-time systems, fixed-priority schedul-
ing is the de facto standard for task scheduling. We therefore focus
on HSFs with fixed task priorities within a virtual platform. Having
such support will simplify migration to and composition of legacy
applications into the HSF. Our current research efforts are directed
towards the conception and realization of a two-level HSF that is
based on

1. fixed-priority scheduling for both global scheduling of budgets
allocated to virtual platforms and local scheduling of tasks
within an application,

2. the explicit-deadline periodic (EDP) resource-supply model
[12] for computing the sizes of the allocated budgets to ap-
plications running on a virtual platform, and

3. the ability to execute tasks for a contiguous duration non-
preemptively, both locally and globally.

The latter allows tasks from different applications to share resources
requiring mutually exclusive access. An HSF without such support is
not realistic, since the tasks of several applications may for example
use operating system services, memory mapped devices and shared
communication devices. However, preemptive scheduling requires a
resource access protocol, such as the stack resource policy (SRP) [1],
and an extension of its analysis. As an alternative, fixed-priority
scheduling with deferred preemptions of tasks (FPDS) [20] (also
known as co-operative scheduling [7]) has been proposed as a viable
alternative between the extremes of fully preemptive scheduling and
non-preemptive scheduling. With FPDS, each task is assumed to
consist of a sequence of non-preemptive sub-jobs. When a task
is executing, it can be preempted by tasks with a higher priority
only between consecutive sub-jobs, i.e., at so-called preemption
points. Hence, there is no need for a resource access protocol as
long as each contiguous mutual-exclusive region is contained in a
non-preemptive sub-job.

Compared to both fully preemptive scheduling and non-preemptive
scheduling of tasks with fixed priorities, FPDS may significantly
improve the feasibility of a task set [20, 4] and, thus, the resource
requirements of the constituting application. Moreover, compared
to preemptive scheduling, FPDS (i) may reduce memory require-
ments [13] and (ii) may reduce the cost of arbitrary preemptions [7,
20, 23, 3, 5], for example, due to cache-related preemption delays
and pipeline flushes. However, these advantages of FPDS may no



Π Π

Θ ΘB

Π

Θ

Legend:

No preemptions of other applications!

Preemptive execution Non-preemptive execution

Appl.

Figure 1: Given an application with a processor budget of
Θ time units every period Π. If this application depletes its
budget while it executes non-preemptively, excessive blocking
durations (B) can occur for other applications.

longer hold when an application is executed upon a virtual plat-
form that can be preempted by other virtual platforms at arbitrary
moments in time.

We therefore propose an extension of the EDP resource-supply
model [12] in order to be able to analyze hierarchical FPDS of
tasks as efficiently as we can analyze it on a dedicated platform
(see [20, 4]). When an application is suspended during its non-
preemptive execution due to the exhaustion of the corresponding
budget, excessive blocking periods can occur (see Figure 1) which
may hamper the timeliness of other applications [14]. For this pur-
pose, just like (amongst others) Deng and Liu [10] did, we consider
the overrun mechanism of Ghazalie and Baker [14] to prevent the
depletion of a budget during global non-preemptive execution of a
task. An overrun temporarily increases the budget with a statically
determined amount for the duration of a non-preemptive sub-job.
Global non-preemptive execution of tasks does therefore not only
defer preemptions of other tasks of the same application, but it may
also defer preemptions of tasks of other applications, although in a
controlled manner.

Contributions
In this paper, we first present a new compositional scheduling
model for tasks and applications that execute their workload in
non-preemptive chunks (sub-jobs). We base our model on the fol-
lowing bricks: (i) the sporadic task model, (ii) fixed task priorities,
(iii) the EDP resource-supply model and (iv) an overrun mechan-
ism for completing non-preemptive sub-jobs of tasks upon budget
expiry.

Secondly, we present exact FPDS analysis for the tasks of an applic-
ation that are allocated an EDP resource.

Finally, we derive an algorithm to compute tight budgets for these
applications consisting of limited-preemptive tasks. The following
application parameters are our inputs:

• sporadic-task characteristics, as well as the lengths of non-
preemptive sub-jobs and relative task priorities.

• a period (Π) and a deadline (Δ) for the allocation of budget
(Θ) and overrun budget (χ) which are to be computed.

The overrun budget χ is derived from just task characteristics. Our
algorithm computes the smallest possible Θ. Thus, assuming an
EDP resource supply of Θ time units every period Π prior to dead-
line Δ and assuming a bounded overrun of at most χ time units
in each period Π, the tasks are guaranteed to meet their deadlines.

Further, a periodic resource supply of Θ− ε , for any infinitesimally
small ε > 0, may fail task deadlines.

2. REAL-TIME SCHEDULING MODEL
This section presents a basic, continuous scheduling model, i.e.,
we assume time to be taken from the real domain (R), similar to,
e.g., [20, 4]. We assume a single processor which may be shared
by different applications. We first describe the model of FPDS for
the scheduling of one application. Secondly, we describe the EDP
resource-supply model, and its augmentation, that we use to allocate
a virtual platform to each application.

2.1 Application model
An application comprises a set T of n independent, sporadic tasks
τ1, τ2, . . ., τn, with unique priorities π1, π2, . . ., πn. At any moment
in time, the processor is used to execute the highest priority task
that has work pending. For notational convenience, we assume
that (i) tasks are given in order of decreasing priorities, i.e., τ1 has
highest priority and τn has lowest priority, and (ii) a higher priority
is represented by a higher value, i.e., π1 > π2 > .. . > πn.

Each task τi is characterized by a minimal inter-arrival time Ti ∈R
+,

a worst-case computation time Ci ∈ R
+, and a (relative) deadline

Di ∈ R
+. The deadline Di may be smaller than, equal to, or larger

than the period Ti. A release of a task is called a job. A job can arrive
at an arbitrary time and two subsequent job arrivals are separated by
at least Ti time units.

We also adopt standard basic assumptions [17], i.e., tasks do not
suspend themselves, a job of a task does not start before its previous
job is completed, and the overhead of context switching and task
scheduling is ignored.

In FPDS, each task τi consists of a pre-defined sequence of mi
non-preemptive sub-jobs, where mi ≥ 1. The a-th sub-job of τi
is denoted by τi,a and characterized by a worst-case computation
time Ci,a ∈ R

+, where Ci = ∑1≤a≤mi
Ci,a. Since sub-jobs are non-

preemptive, a task can only be preempted between consecutive sub-
jobs, i.e., at so-called preemption points. FPDS has non-preemptive
scheduling as a special case when (∀i : 1 ≤ i ≤ n : mi = 1) and it
has fully preemptive scheduling as a special case when the sizes of
Ci,a are infinitesimally small.

2.2 Virtual platform
A two-level hierarchical scheduling framework (HSF) – as pro-
posed by Deng and Liu [10] – implements a set of N applications
A1, . . . ,AN on a single processor. These applications abstract the
workload generated by their tasks deeper in the hierarchy that imple-
ment the real work to be executed. A global (top-level) scheduler
arbitrates access of an application to the processor. A local sched-
uler determines which task of the selected application executes on
the processor. Admitting an application in the HSF should preserve
its tasks’ deadlines.

The parameters that define a worst-case processor supply to an
application, contemplating that timing constraints of the task set
are satisfied, together form a so-called real-time interface. This
interface serves as a resource supply contract, which abstracts the
timing constraints of the tasks of an application into a single real-
time constraint. We model the processor-supply contract by means
of an (augmented) explicit-deadline periodic (EDP) resource-supply
model [12].



Θ

0

Θ

2Θ

3Θ

4Θ

0 Π +Δ− 2Θ 2Π +Δ− 2Θ 3Π +Δ− 2Θ 4Π +Δ− 2Θ

pr
o
ce
ss
or

ti
m
e
(t
)

lsbfΩ(Π,Θ,Δ)(t)

sbfΩ(Π,Θ,Δ)(t)

Θ Θ

Π Π Π

Θ

Δ

Π

Θ

ΔΔΔ

Δ−Θ

time (t)

BΩ α

Π

Processor
supply:

Figure 2: The worst-case EDP supply to an application,
sbfΩ(t), in an arbitrary time interval of length t, and its cor-
responding linear approximation, lsbfΩ(t), according to the
EDP model Ω(Π,Θ,Δ).

An EDP resource Ω(Π,Θ,Δ,χ) supplies Θ time units of processor
time every period of Π time units and Θ is provisioned no later
than Δ time units from the start of a period Π (where Θ ≤ Δ ≤
Π−χ). An application that receives its processor resources through
a virtual platform according to an EDP resource supply interferes
with other applications in the system as if it was as a single deadline-
constrained periodic task. Further, we augment the default EDP
resource-supply model of Easwaran et al. [12] with a parameter χ
in order to specify that, in a period Π, an application may request
(even more than once) to execute on the processor for at most χ
contiguous time units non-preemptively.

The supply bound function, sbfΩ(Π,Θ,Δ,χ)(t), returns the least amount
of processor resources supplied to an application in any sliding in-
terval of length t, i.e.,

sbfΩ(t) = max

⎧⎪⎪⎨⎪⎪⎩
0,(

h(Ω,t)−1
)

Θ,

t −
(

h(Ω,t) +1
)
(Π−Θ)+(Π−Δ)

⎫⎪⎪⎬⎪⎪⎭ , (1)

where h(Ω,t) =
⌈

t−(Δ−Θ)
Π

⌉
.

A key property of the sbfΩ(t) is that it is unaware of the details of
the application. Hence, it does not take the worst-case contiguous
execution demand of an application into account, as described by χ .
The sbfΩ(t) is illustrated in Figure 2. The first clause of the max-
term prevents that the supply bound becomes negative. The second
and the third clause represent alternative views on the available
processor time to the application:

1. application’s view: In an arbitrary interval of length t, the
application receives "k times Θ" time units. The application
starts requesting for processor time when Θ has just been de-
livered, so that it has to wait for the longest possible duration
until processor time is supplied.

2. platform’s view: In an interval of length t, the application
receives t minus the unavailable processor time. The worst-
case unavailable processor time is characterized as follows:
firstly, the delivery of processor resources is blocked for a
duration of BΩ = Π+Δ−2Θ time units and Π−Θ time units
are made unavailable periodically.

When an application has the entire platform at its disposal, then we
simply ignore the constraints imposed by an augmented EDP model
and the processor supply then becomes sbfΩ(t) = t.

3. FPDS ANALYSIS ON AN ENTIRE PRO-
CESSOR

In this section, we briefly recapitulate the worst-case schedulability
analysis for FPDS as described in [20, 4], i.e., for a continuous
scheduling model. We start this section with basic terminology and
definitions. Next, we describe the worst-case blocking of tasks under
FPDS and recapitulate the notion of ε-critical instant, on which the
analysis is based. We conclude this section with an algorithm to
determine whether or not a set of sporadic tasks meets its deadlines
under FPDS.

3.1 Blocking between the tasks of an applica-
tion

For a task τi, the worst-case blocking, Bi, is given by the largest
computation time of a sub-job of a task τ� with a priority lower than
πi.

Bi = max

(
0, max

�:π�<πi
max

{
C�,a

∣∣∣∣ 1 ≤ a ≤ m�

})
. (2)

The outermost max in (2) is used to define Bi in situations where
there exists no lower priority task with a sub-job that prevents τi to
preempt, e.g., for the lowest priority task τn.

Also, a sub-job of a low priority task τ� must start with its execution
of Bi prior to the release of the higher priority job of task τi. There-
fore, if this blocking time Bi is positive, it is a supremum and not a
maximum.

3.2 Critical instant and level-i active period
A critical instant of a task is defined to be a (hypothetical) instant
that leads to the worst-case response time for that task [17]. The
maximum response time of a task τi can be found when (i) τi has
a simultaneous release with all higher priority tasks and (ii) the
longest sub-job of the lower priority tasks with computation time
Bi starts an infinitesimally small time ε before that simultaneous
release. However, the maximum response time is not necessarily
the first job of task τi after a critical instant, but can occur in later
jobs contained within a so-called level-i active period [20]1.

To define the level-i active period, we use the notion of pending load.
The pending load Pi(t) is the amount of processing at time t that
still needs to be performed for the jobs with a priority higher than
or equal to task τi that are released before time t. A level-i active
period is an interval [ts, te), such that Pi(t)> 0 for all t ∈ (ts, te) and
Pi(ts) = Pi(te) = 0.

The worst-case length te − ts of a level-i active period is denoted by
WLi. This length WLi is computed through a recurrence [20]

x(�+1) = Bi + ∑
j:π j≥πi

⌈
x(�)

Tj

⌉
Cj, (3)

where x(0) = Bi +Ci. The recursion stops when x(�+1) = x(�), yield-
ing the worst-case length WLi of a level-i active period. The proced-

1The notion of level-i active period supersedes the notion of level-i
busy period [15]; see [20].



ure is guaranteed to terminate when the utilization UT of the task

set T is less than one, i.e., UT = ∑1≤i≤n
Ci
Ti
< 1.

The worst-case number of jobs of task τi released in a level-i active
period, denoted by wli, is given by

wli =
⌈

WLi

Ti

⌉
. (4)

The worst-case response time of task τi is then given by the max-
imum of the response times of the jobs k ∈ [0,wli).

3.3 Determining schedulability of an applica-
tion

We now recapitulate the schedulability test for FPDS based on
discontinuous points of cumulative execution-request functions [4].
The worst-case cumulative execution request W (π, t) in an interval
[a,b) of length t of all tasks with a priority higher than π is given by

W (π, t) def
= ∑

h:πh>π

⌈
t

Th

⌉
Ch. (5)

The modified execution request W ∗(π, t) in a closed interval of
length t is given by

W ∗(π, t) def
= ∑

h:πh>π

(⌊
t

Th

⌋
+1

)
Ch. (6)

We use W (π, t) and W ∗(π, t) in a function ψi,k(x) that defines the
cumulative execution request of a job k of task τi (until its last
sub-job) and all higher priority jobs, (excluding the blocking term),
i.e.,

ψi,k(x) = (k+1)×Ci −Ci,mi +

{
W (πi,x) for Bi > 0
W ∗(πi,x) for Bi = 0

. (7)

We write ψi,k

∣∣∣
(Bi>0)

(t) and ψi,k

∣∣∣
(Bi=0)

(t) in order to refer to the

distinctive cases in (7) for the Bi > 0 and Bi = 0, respectively.

The time points to be inspected, representing the discontinuous
points of ψi,k(x), can be represented as

Πi,k=(k×Ti, k×Ti +Di −Ci,mi ]
⋂
{h×Tj | ∀h ∈ N, j ≤ i}⋃

{k×Ti +Di −Ci,mi}. (8)

Πi,k is a non-empty and a finite set of time points: it contains at

least
(
k×Ti +Di −Ci,mi

)
. In special cases, e.g., Ci = Di, this may

include time 0 for job k = 0. Note that the inspected time points,
presented by Bertogna et al. [4], do not necessarily coincide with
the exact worst-case start of the final sub-job τi,mi of job k of task τi
as they are computed by Bril et al. [20].

We are now ready to present an exact schedulability test for FPDS
using execution-request curves.

THEOREM 1 (THEOREM 1 IN [4]). A task set is schedulable
under FPDS, if and only if ∀i : 1 ≤ i ≤ n :

∀k ∈ [0,wli) ::
(∃t ∈ Πi,k :: Bi +ψi,k(t)≤ t

)
(9)

Algorithm 1 jobTolerance(T , i, k, Ci,mi )

1: βi,k ← maxt∈Πi,k

{
t −ψi,k

∣∣∣
(Bi>0)

(t)
}

;

2: if βi,k = 0 then
3: t� = k×Ti +Di −Ci,mi ;

4: βi,k ← t�−ψi,k

∣∣∣
(Bi=0)

(t�);

5: end if
6: return βi,k;

Algorithm 2 computeBlockingTolerance(T , i, Ci,mi )

1: {Find the blocking tolerance for the first job:}
2: βi,0 ← jobTolerance(T , i, 0, Ci,mi );

3: if βi,0 < 0 then return βi,0
4: βi ← βi,0;

5: compute ŵli using (15);
6: {Find the minimum βi,k in the level-i active period:}

7: for k ← 1; k < ŵli; k ← k+1 do
8: βi,k ← jobTolerance(T , i, k, Ci,mi );

9: if βi,k < 0 then return βi,k
10: βi ← min(βi; βi,k);
11: end for
12: return βi;

and for every task τi with Bi = 0, for each job k there exists a t ∈Πi,k
such that the following condition holds:

ψi,k

∣∣∣
(Bi>0)

(t)< t
∨ (

t� = k×Ti +Di −Ci,mi

ψi,k

∣∣∣
(Bi=0)

(t�)≤ t�

)
. (10)

PROOF. See Theorem 1 in [4].

We conclude that a nice property of FPDS is that a task may acceler-
ate its own completion, at the cost of blocking others, by finishing
its final sub-job, Ci,mi , without any interference.

3.4 Blocking tolerance of tasks
Bertogna et al. [4] have proposed an efficient algorithm to implement
their schedulability test (see Theorem 1) based on so-called blocking
tolerances [18] of tasks. The blocking tolerance βi of a task τi,
as introduced by Lortz and Shin [18], is the maximum amount
of blocking that a lower priority task may induce to τi without
hampering the feasibility of task τi. The blocking tolerance for a
task τi is defined by the minimum blocking tolerance of all its jobs
in a level-i active period:

βi= min
0≤k<wli

{
βi,k

}
, (11)

where βi,k is the blocking tolerance of job k of τi.

Based on Theorem 1, the schedulability of job k of τi can be checked
for Bi > 0 by

∃t ∈ Πi,k
(
Bi ≤ t −ψi,k(t)

)
. (12)

Equation (12) can be rewritten into the blocking tolerance βi,k of
job k of τi, as follows:

βi,k = max
t∈Πi,k

{
t −ψi,k(t)

}
. (13)



The definition for βi,k is only correct for a strictly positive blocking
tolerance (i.e. Bi > 0). In case that βi,k < 0, we know that job k
deems the task unschedulable. When βi,k = 0, then we need to verify
whether or not βi,k is really equal to 0 using the rules for Bi = 0 in
Theorem 1. Algorithm 1 presents the algorithm derived by Bertogna
et al. [4] for determining the blocking tolerance of job k of task τi.

After computing the blocking tolerance for the first job, βi,0, we
have an upper bound for the maximum amount of blocking that
task τi may suffer, see (11). We can therefore use the value βi,0 to
compute an upper bound on the worst-case length, see (3). That
is, in (3) we replace Bi by a larger value βi,0. An upper bound on

worst-case length ŴLi is then given by the smallest x ∈ R
+ that

satisfies the following recursive equation

x(�+1) = βi,0 + ∑
j:π j≥πi

⌈
x(�)

Tj

⌉
Cj, (14)

where x(0) = βi,0 +Ci. The recursion stops when x(�+1) = x(�),
yielding a upper bound ŴLi of a level-i active period.

A worst-case bound on the number of jobs of task τi released in a

level-i active period, denoted by ŵli, is then given by

ŵli =

⌈
ŴLi

Ti

⌉
. (15)

Having obtained this bounded number of ŵli jobs to be analyzed,
Algorithm 2 simply computes the blocking tolerance βi by taking the
minimum over all jobs to be considered for task τi, i.e., according
to (11).

Finally, the main result derived by Bertogna et al. [4] is that a set of n
sporadic tasks, with given task characteristics (Ti,Di,Ci,1, . . .Ci,mi),
can be scheduled by FPDS, if and only if

∀i : 1 ≤ i ≤ n : 0 ≤ Bi ≤ βi, (16)

where Bi can be computed as in (2) and βi can be computed using
Algorithm 2.

We will later re-use Algorithm 2 in order to decide whether or not a
set of tasks can also be scheduled by FPDS upon a virtual platform.
This is more complicated than the analysis of an application upon
an entire processor, because tasks may not only experience blocking
from lower-priority tasks of the same application, but also from
tasks in other applications and from the unavailability of platform
resources, BΩ.

4. COMPOSITIONAL ANALYSIS FOR HIER-
ARCHICAL FPDS

This section presents compositional analysis for hierarchical FPDS
of tasks. Firstly, we consider the global schedulability test which
implements the admission control of applications based on their re-
source requirements specified by augmented EDP interfaces. During
the composition of applications, we take into account the blocking
by tasks located in other applications. Secondly, we consider the
local schedulability analysis of the tasks of an application upon an
EDP resource. During the application analysis, we take into account
the blocking due to the unavailability of the platform resources.

4.1 Composition of virtual platforms
We consider an overrun mechanism [9, 2, 21] to prevent depletion
of a budget during global non-preemptive execution of a task by tem-
porarily increasing the budget with a statically determined amount
for the duration of that non-preemptive sub-job. To distinguish this
additional amount of budget from a normal budget (Θ), we will
use the term overrun budget. Since an application with an inter-
face Ω(Π,Θ,Δ,χ) may request at most χ time units of contiguous
non-preemptive execution, its overrun budget is of the same size as
χ . Note that a special property of the overrun budget is that it is
provisioned entirely non-preemptively. We will exploit this property
in our analysis.

Given an EDP interface Ω(Π,Θ,Δ,χ), we therefore derive a sporadic
task τi with the following timing characteristics:

• Ti ← Π; • Di ← (Δ+χ);
• Ci ← (Θ+χ); • Ci,mi ← χ .

In line with the FPDS task model, we re-use the FPDS analysis
of [20, 4] at the scheduling level of virtual platforms allocated to
applications. The conventional EDP [12] parameter Δ serves as a
deadline for the supply of just the normal budget Θ. Beyond Δ,
only an overrun budget χ may be supplied and, if it is supplied,
it is supplied non-preemptively. Hence, Δ is just an intermediate
deadline [7] for budget Θ and the total worst-case supply (Θ+ χ)
is constrained by a relative deadline (Δ+χ)≤ Π.

Assume a set of applications A1 . . .AN with corresponding interfaces
Ω1 . . .ΩN and a fixed priority assignment to the applications2. Using
the above characteristics of an application in terms of the classic
sporadic task model, we can now apply the schedulability analysis
presented in Section 3.

In order to apply the analysis in (16), we must compute the blocking
Bi experienced by an application Ai, caused by the execution of a
non-preemptive sub-job of a task in a lower priority application A�.
For ease of presentation, we assume that applications are ordered
by descending priorities, i.e., A1 has the highest priority and AN has
the lowest priority. The blocking term Bi can then be instantiated
from (2) as follows:

Bi = max{χ� | � > i} . (17)

We now have the timing information which allows us to test the
condition in (16) for a given set of applications.

4.2 Analyzing an application upon a virtual
platform

We now analyze the tasks of an application that have to run on a
virtual platform. In order to be able to reuse the existing analysis
of FPDS for application mappings on EDP resources, we must take
into account the scheduling delays imposed by the unavailability of
the platform resources.

Looking at Figure 2, there are two types of scheduling delays that
may come with an EDP resource:

2Davis and Bertogna [8] have recently proposed an algorithm to
determine the priorities of a set of tasks optimally under FPDS.
Since applications (are forced to) behave like tasks, their algorithm
can be applied to our scheduling model at the top-level as well.



1. a delay, BΩ, of the start of job executions;

2. a periodic delay, Π−Θ, due to budget depletion.

Firstly, as we have discussed before, the scheduling delay of BΩ
time units is an additional blocking term for the tasks of an applica-
tion. This means that a necessary condition for fitting an application
on an EDP resource Ω is that the total blocking, either by the virtual
platform (BΩ) or by local lower priority tasks (Bi) inside the applic-
ation, must not exceed the blocking tolerance of a task. Formally
formulated:

∀i : 1 ≤ i ≤ n : 0 ≤ BΩ +Bi ≤ βi, (18)

where Bi is defined in (2) and βi is defined in (11).

Secondly, budget depletion causes a preemption of the running ap-
plication at an arbitrary position in the execution of its tasks. This
property of the EDP model fits a fully preemptive scheduling model
(as it is considered by Easwaran et al. [12]). Under FPDS of tasks,
however, this property is undesirable at run time, because the sub-
jobs of tasks are meant to be non-preemptive. We therefore allow
budget overruns (for a duration of at most χ time units) in order to
complete the execution of a non-preemptive sub-job, so that arbit-
rary preemptions of tasks are prevented. This application behavior
can only be observed during online execution, however. Both the
resource-supply model of a virtual platform (see Section 2.2) and
the task-level analysis of an application (see Section 3) abstract
from this behavior. Inherited from the FPDS analysis in [20, 4]
(see Section 3), our analysis assumes a fully preemptive scheduling
model for tasks until they start executing their final sub-job. From
then onwards, this job must finish non-preemptively.

Since FPDS forbids further delays of the execution of a task’s last
sub-job, it is important to note that budget overruns are instrumental
for the reuse of the existing analysis of FPDS on EDP resources.
As we can see in (7), the requested resources of a task τi are only
measured until the last preemption point, i.e., preemptions are ac-
counted until the start of the final sub-job (of length Ci,mi ). From
this preemption point onwards, it is assumed that this task will com-
plete within Ci,mi time units, because sub-jobs cannot be preempted.
Hence, our implementation of a virtual platform must give the same
guarantees to this task, e.g., through an overrun mechanism (as we
propose in this paper). This leads us to the following analysis for an
application scheduled under hierarchical FPDS on an EDP resource.

THEOREM 2. A set of sporadic tasks is schedulable under FPDS
upon an EDP resource Ω(Π,Θ,Δ,χ) with an overrun of at most χ
time units every period Π , if ∀i : 1 ≤ i ≤ n : ∀k ∈ [0,wli) ::(∃t ∈ Πi,k :: Bi +ψi,k(t)≤ sbfΩ(t)

)
(19)

and (
∀i, j : 1 ≤ i ≤ n

∧
1 ≤ j ≤ mi : Ci, j ≤ χ

)
(20)

and for every task τi with Bi = 0, for each job k there exists a t ∈Πi,k
such that the following condition holds:

ψi,k

∣∣∣
(Bi>0)

(t)< sbfΩ(t)
∨(

t� = k×Ti +Di −Ci,mi

ψi,k

∣∣∣
(Bi=0)

(t�)≤ sbfΩ(t�)

)
.(21)

PROOF. Similar to Theorem 1 in [4].

Under FPDS it is assumed that if the last sub-job of a task τi starts,
then it will also complete within Ci,mi time units. Hence, if non-
preemptive execution of a sub-job is initiated and the budget Θ
depletes, then χ must be supplied. For this purpose, we introduced
the constraint in (20) in order to make sure that the allocated overrun
budget χ is sufficiently large to meet the FPDS assumption on the
progress of the task’s execution.

5. DESIGNING A VIRTUAL PLATFORM FOR
AN APPLICATION

In this section we present algorithms to compute the smallest pos-
sible budgets for a given application. Assume we are given an
application consisting of a set of tasks T with given characteristics
(Ti, Di, Ci,1 . . .Ci,mi , πi). We select the period parameter Π and the
deadline parameter Δ as the design parameters in the application’s
augmented EDP interface. Given these inputs, the question is then:
what are the smallest (normal) budget Θ and the smallest overrun
budget χ satisfying the scheduling conditions in Theorem 2?

In this section we answer this question. Let us first define the notion
of an exact EDP interface.

DEFINITION 1 (EXACT EDP INTERFACE). Assume a given ap-
plication consisting of a task set T with given timing characteristics
(Ti, Di, Ci,1 . . .Ci,mi , πi), a given period Π and a given deadline Δ.
We call an EDP interface Ω(Π,Θ,Δ,χ) exact (or optimal) for this
application, if

• the schedulability conditions of Theorem 2 are satisfied with
a budget Θ and an overrun budget χ .

• those conditions are violated with Θ− ε or with χ − ξ , for
any infinitesimally small ε > 0 and ξ > 0.

The computation of Θ closely follows the classic analysis of FPDS [20,
4], just like our analysis for hierarchical FPDS in Section 4 does.
Although Theorem 2 is not an exact scheduling test for hier-
archical FPDS, the notion of an exact interface refers to the
tightest budget we can compute by means of this theorem. This
means that, during the computation of budget Θ, we cannot assume
that overrun is provisioned during the execution of tasks unless we
encounter the situation where the last sub-job of a task has been
started.

5.1 Allocating an overrun budget χ
Using Definition 1, we can straightforwardly allocate an overrun
budget χ to an application. The following assignment of χ satisfies
the necessary schedulability condition in (20):

χ ← max
{

Ci, j
∣∣ 1 ≤ i ≤ n

∧
1 ≤ j ≤ mi

}
. (22)

5.2 Allocating a periodic budget Θ
Computing the smallest possible budget Θ for an application is more
complicated than deriving overrun budgets. Dewan and Fisher [11]
have presented an approximation schemes for computing the budgets
Θ under fully preemptive scheduling of sporadic tasks upon an
EDP resource (assuming a given period Π and a given deadline Δ).
Based on their approximation algorithm for fixed-priority preempt-
ive scheduling of tasks, we derive an exact algorithm for computing
an optimal budget for FPDS of tasks.



Algorithm 3 ComputePartialBudget(Π, Δ, Y (t), t)

1: �=
(t−Δ)+

√
(t−Δ)2+4Π·Y (t)

2Π
2: Θ1 ← Y (t)−t+(
��+1)Π+Δ


��+2

3: Θ2 ← Y (t)
��−1

4: if �� ≤ 
�� then
5: Θ2 ← Y (t)

��
6: end if
7: Θmin

t ← min(Θ1, Θ2)
8: return Θmin

t

Similar to, e.g., [11, 16], we first derive an algorithm to solve the
inequalities in the scheduling conditions in (19) and (21).

LEMMA 3. Given an application with a cumulative workload
represented by variable Y (t) at time t, a period Π and a deadline Δ.
The smallest budget Θ, satisfying the inequality Y (t)≤ sbfΩ(t), is
given by

Θ ≥ Y (t)
k

∨
Θ ≥ −t +Y (t)+ kΠ+Δ

k+1
(23)

such that k ∈ N
+ and

Y (t)
k

<
−t +Y (t)+ kΠ+Δ

k+1
⇔ k ≥ 
��+1 (24)

and

Y (t)
k

≥ −t +Y (t)+ kΠ+Δ
k+1

⇔
k ≤ �� if ��< 
��+1

k ≤ ��−1 else, (25)

where

�=
t −Δ+

√
(t −Δ)2 +4Π ·Y (t)

2Π
. (26)

PROOF. Variable k reconstructs the value of h(Ω,t) in (1) by com-
puting the intersection between the two non-zero line segments in
coordinate (t, Y (t)), see (23). The intersection is characterized by
the roots of the convex parabola Πk2 + k(Π− t)−Y (t). The value
of k is determined by observing that h(Ω,t) ∈ N

+. The real-number
representation of the positive root, �, of the parabola is given in (26);
its counter part always has a negative value, because the term in the
square root dominates the preceding term. Since the left-hand sides
of the bi-implications in (24) and (25) are strictly non-overlapping
(mutually exclusive) inequalities, we have to guarantee a strictly
smaller value k ∈ N

+ in (25) than in (24). The case distinction
detects whether or not ��= 
��+1. This concludes the proof.

From Lemma 3, we can directly derive Algorithm 3 to compute
an optimal budget for a given period Π and a given deadline Δ,
satisfying the requested resources Y (t) at time t.

With the help of Algorithm 3, we can solve the inequalities in the
scheduling conditions in (19) and (21). In line with [20, 4], these
scheduling conditions present two non-uniform cases for comparing
the cumulative processor requirements of a task against the supplied
resources: one with and one without a blocking term. As shown
before by condition (18), however, the tasks executing on a virtual

Algorithm 4 FPDSMinimumBudget(T , Π, Δ)

1: Θopt ← 0;
2: for i ← 0; i < n; i ← i+1 do
3: {Compute βi using Algorithm 2:}
4: βi ← computeBlockingTolerance(T , i, Ci,mi );
5: if βi < 0

∨
Bi > βi then return infeasible;

6: if βi = 0
∨

Θopt ≥ Π then
7: {T cannot run with less than the entire processor:}
8: Θopt ← max(Θopt, Π);
9: continue;

10: end if
11: {Invariant: βi > 0}

12: Determine ŵli using (15); {Reuse it from Algorithm 2}

13: for k ← 0; k < ŵli; k ← k+1 do
14: for each t ∈ Πi,k do
15: {Compute the smallest requirement of this job:}
16: Θi,k,t←ComputePartialBudget(Π,Δ,Bi +ψi,k(t), t);
17: Θi,k ← min

(
Θi,k, Θi,k,t

)
;

18: end for
19: {Take the largest requirement of all jobs of a task:}
20: Θi ← max

(
Θi, Θi,k

)
;

21: end for
22: {Take the largest requirement of all tasks:}
23: Θopt ← max(Θopt, Θi);
24: end for
25: return Θopt;

platform may not only experience blocking from lower priority
tasks of the same application, but they also suffer blocking due
to the unavailability of the virtual-platform’s resources, BΩ. On a
virtual platform, the blocking tolerance βi of a task τi must therefore
be larger than 0, because otherwise the corresponding application
cannot run on an EDP resource other than the entire processor. This
observation simplifies our algorithm for computing EDP budgets,
because we can ignore the non-uniform case in (21) without blocking
and we focus on solving the inequality in (19).

Algorithm 4 computes the smallest possible budget of an EDP re-
source that still allows tasks to make their deadlines under hier-
archical FPDS. It iterates through all the tasks of an application
and it works as follows. First (line 3–5), we compute the blocking
tolerance of a task and we check whether or not the considered task
satisfies the necessary scheduling condition in (16). If the blocking
tolerance of a task is 0, then no further blocking from the platform
(BΩ) can be tolerated, i.e., this task requires the entire processor (see
line 6–10). In this situation, we do not need to consider further com-
putations of budget Θ, see the continue statements (line 9). Finally,
in line 11–23 we compute the smallest budget Θi that that allows a
task to make its deadline.

In order to compute such a budget Θi, we must have an upper bound
on the number of jobs of task τi to be tested for schedulability.
Looking at the scheduling condition in (19), we observe also that
the level-i active period, WLi, depends on the worst-case amount of
blocking experienced by task τi. Since we aim at minimizing the
allocated EDP budget, Θ, to an application, we correspondingly try
to maximize the amount of blocking by the platform (BΩ) to the
tasks of that application. The freedom we have is restricted by the
blocking tolerance of tasks, see (18). Considering this restriction,

we reuse the same conservative upper bound ŴLi as Bertogna et
al. [4] did, i.e., see Algorithm 2 (line 12) and see (14). We now loop



through these jobs (line 13–21) and for each of them we inspect their
set of discontinuous time points (line 14–18). Since we can replace
the quantifiers (∀,∃) in the scheduling conditions of tasks in (19)
by max−min operators, we can apply Algorithm 3 to compute the
intersection of the execution-request curves with the resource-supply
function, sbfΩ(t), at the inspected time points (line 16).

To be precise, the loop in line 13–21 computes the smallest budget
Θi for a task τi. Using the condition (19) in Theorem 2 and filling
in the execution-request of task τi in condition (23) of Lemma 3, we
obtain the following solution: Θi ≥

max
k∈[0,wli)

min
t∈Πi,k

{
min

(
Bi +ψi,k(t)

k
,
−t +Bi +ψi,k(t)+ kΠ+Δ

k+1

)}
.

(27)
and the value of k in (27) is reconstructed using Algorithm 3.

Finally, in order to meet the deadlines of all tasks of an applica-
tion on an EDP resource, we allocate the largest budget require-
ments Θi (see line 21). Algorithm 4 therefore returns an optimal
budget Θopt (line 25) which defines an augmented EDP interface
Ω(Π,Δ,Θopt,χ), with χ according to (22), that can be used to
dimension the virtual platform allocated to the analyzed application.

5.3 Algorithmic complexity of budget alloca-
tions

The complexity of determining the overrun budget χ is linear in the
number of tasks and linear in the number of sub-jobs of an applic-
ation, see (22). The complexity of determining budget Θ is more
complicated. Nevertheless, Algorithm 4 has the same complexity as
the the scheduling analysis of FPDS in [20, 4]. The operations of
Algorithm 3, ComputePartialBudget(. . . ), take just constant
time complexity. Hence, the overall complexity of Algorithm 4 is
determined by the sequence of computing (i) the blocking tolerances
βi (line 3–10) and (ii) the optimal budget Θopt (line 11–23). Each of
these two parts of Algorithm 4 has the same computational complex-
ity, i.e., determined by the number of jobs and the corresponding
number of generated time points in Πi,k that need to be tested per
job. Hence, Algorithm 4 has a pseudo-polynomial time complexity
in the number of tasks of an application.

6. CONCLUSION
In this paper we presented a compositional model to enable fixed-
priority scheduling of tasks with deferred preemptions across a
hierarchy of schedulers. For this purpose, we defined a virtual
platform using the EDP resource-supply model, augmented with
an overrun mechanism. In our augmented EDP model, the virtual
platform satisfies the classic FPDS model. A major advantage
of applying the FPDS model is that it considers also the benefits
(i.e, accelerated executions) of the tasks that block other tasks of
an arbitrary application. However, most literature for hierarchical
scheduling builds on preemptive scheduling analysis, for example,
see [10, 9, 2, 22], which takes just the penalties of non-preemptive
task executions into account. With our new model, we can re-use
the analysis of FPDS, and its strengths, for the admission control of
applications through virtual platforms on a shared processor.

We also presented an algorithm to compute the sizes of the processor
budgets of a virtual platform. That is, given the task characteristics
of an application and given a period and deadline constraint for the
allocation of a budget, we compute the smallest periodic budget and
the smallest overrun budget such that the tasks of an application meet
their deadlines on a virtual platform that complies to the computed

parameters. Since many resources (for example, a memory bus)
require non-preemptive access, we believe that our scheduling model
and its corresponding analysis is a useful step towards a resource-
efficient composition of resource-sharing applications.

As a future work, we would like to further optimize the composi-
tion process of applications. It would be interesting to investigate
whether or not the preemption cost of multiple applications that
share the same processor can be alleviated, e.g., by finding appropri-
ate placements of preemption points [5] in the execution of tasks or
by using preemption thresholds for preemption points of tasks [6].
In addition, it would be interesting for open environments to allevi-
ate the pseudo-polynomial complexity of our scheduling analysis. A
novel approximation scheme for budget allocations for hierarchical
FPDS may be inspired by, for example, the approximation scheme
for hierarchical preemptive scheduling in [11] or the approximation
scheme for FPDS in [19].

Acknowledgements
This work was supported in part by the European Union’s ARTEMIS
Joint Undertaking for CRYSTAL – Critical System Engineering
Acceleration – under grant agreement No. 332830.

References
[1] T. Baker. Stack-based scheduling of realtime processes. Real-

Time Systems Journal, 3(1): 67-99, March 1991.

[2] M. Behnam, T. Nolte, M. Sjodin, and I. Shin. Overrun methods
and resource holding times for hierarchical scheduling of semi-
independent real-time systems. IEEE TII, 6(1):93 –104, Feb.
2010.

[3] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito,
and M. Caccamo. Preemption points placement for sporadic
task sets. In ECRTS, pages 251–260, July 2010.

[4] M. Bertogna, G. Buttazzo, and G. Yao. Improving feasibility
of fixed priority tasks using non-preemptive regions. In RTSS,
pages 251–260, Dec. 2011.

[5] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. But-
tazzo. Optimal selection of preemption points to minimize
preemption overhead. In ECRTS, pages 217–227, July 2011.

[6] R. J. Bril, M. M. H. P. van den Heuvel, and J. J. Lukkien.
Improved feasibility of fixed-priority scheduling with de-
ferred preemptions using preemption thresholds for preemp-
tion points. In RTNS, pages 255–264, Oct. 2013.

[7] A. Burns. Preemptive priority based scheduling: An appro-
priate engineering approach. In S. Son, editor, Advances in
Real-Time Systems, pages 225–248. Prentice-Hall, 1994.

[8] R. Davis and M. Bertogna. Optimal fixed priority scheduling
with deferred pre-emption. In RTSS, pages 39–50, Dec. 2012.

[9] R. Davis and A. Burns. Resource sharing in hierarchical fixed
priority pre-emptive systems. In RTSS, pages 257–267, 2006.

[10] Z. Deng and J.-S. Liu. Scheduling real-time applications in
open environment. In RTSS, pages 308–319, Dec. 1997.

[11] F. Dewan and N. Fisher. Approximate bandwidth allocation for
fixed-priority-scheduled periodic resources. In RTAS, pages
247–256, April 2010.



[12] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using EDP resource models. In RTSS, pages 129–
138, Dec. 2007.

[13] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip. In RTSS, pages 73–83, Dec. 2001.

[14] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a deadline
scheduling environment. Real-Time Systems Journal, 9(1):31–
67, 1995.

[15] J. Lehoczky. Fixed priority scheduling of periodic task sets
with arbitrary deadlines. In RTSS, pages 201–209, Dec. 1990.

[16] G. Lipari and E. Bini. A methodology for designing hierarch-
ical scheduling systems. Journal of Embedded Computing,
1(2):257–269, 2005.

[17] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a real-time environment. Journal of the ACM,
20(1): 46–61, Jan. 1973.

[18] V. Lortz and K. Shin. Semaphore queue priority assignment for
real-time multiprocessor synchronization. IEEE TSE, 21(10):
834–844, Oct. 1995.

[19] T. H. C. Nguyen, N. S. Tran, V. H. Le, and P. Richard. Ap-
proximation scheme for real-time tasks under fixed-priority
scheduling with deferred pre-emption. In RTNS, pages 265–
274, Oct. 2013.

[20] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. Worst-case re-
sponse time analysis of real-time tasks under fixed-priority
scheduling with deferred preemption. Real-Time Systems
Journal, 42(1-3): 63-119, Aug. 2009.

[21] R.J. Bril, U. Keskin, M. Behnam, and T. Nolte. Schedulability
analysis of synchronization protocols based on overrun without
payback for hierarchical scheduling frameworks revisited. In
CRTS, Dec. 2009.

[22] R. Santos, P. Pedreiras, M. Behnam, T. Nolte, and L. Almeida.
Multi-level hierarchical scheduling in ethernet switches. In
EMSOFT, pages 9–14, Oct. 2011.

[23] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the max-
imum length of non-preemptive regions under fixed-priority
scheduling. In RTCSA, pages 351–360, Aug. 2009.


